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Coherent-anomaly n;ethod in zero-temperature phase 
transitions in quantum spin systems 

Yoshihiko Nonomura and Masuo Suzuki 
Department of Physics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku. 
Tokyo 113, Japan 

Received 10 June 1991 

Abstract. A cluster-effectivefield theory. called the double-cluster approximation, 
is formulated for quantum spin systems a t  T = 0. Combining this approximation 
with the coherent-anomalymethod (CAM), criticalphenomenain such systemscan be 
analysed. To test our theory, we have estimated the critical points and critical expo- 
nents of the one-dimenrional S = $ transverse king model and the onedim-iond 
S = 4 XZ model. Our estimates are in good agreement with the exact solutions. 
These results show that the CAM approach is useful in treating zerwtemperature 
phase transitions in quantum spin systems. 

1. Introduction 

Recently the ground state properties of quantum spin systems have been intensively 
studied, especially in antiferromagnetic systems or frustrated systems. In these s y s  
terns phase transitions may even occur at T = 0 as a parameter of the Hamiltonian 
is varied. For simplicity, we consider a zero-temperature ferromagnetic quantum spin 
model described by the following Hamiltonian: 

?l = ?l,, gHq, (1.1) 

[%%& # 0 (1.2) 

with a quantum interaction 'Hqu satisfying 

and 

(1.3) 
( i j )  

where denotes the sum over ail the nearest-neighbour bonds. Since 'HI, is the Ising 

Hamiltonian, (the ground state average of 5'") is the order parameter of this 
model. I t  displays critical phenomena in the vicinity of a certain critical point g = g;. 
The critical exponents are defined as follows: 

(ij ) 
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Until the present time, quantum spin models of this type at  T = 0 have often been 
treated by the phenomenological renormalization-group and finite-size scaling methods 
[l, 21. In these methods each finite-size cluster is characterized by its linear size. Then 
only regular clusters (for example, on the square lattice, 2 x 2,3 x 3 , 4  x 4, . . . ones) can 
be used for the estimation of the critical point and critical exponents. Although these 
methods are useful in one-dimensional systems [3] and some simple two-dimensional 
systems [4], it is generally difficult to apply them to higher-dimensional systems, be- 
cause only a few clusters are available owing to  the limited memories of computers. 

In the present paper we propose a new approach to treat zero-temperature phase 
transitions of quantum spin systems, using the coherent-anomaly method (CAM) [5, 
6) proposed by one of the present authors (MS). In the CAM, non-classical critical 
exponents are estimated from a series of mean-field or effective-field approximations. 
Each approximation has the mean-field critical point gc, and the approximation is 
characterized by the ‘degree of approximation’ g, - g:. Then not only regular clusters 
but also some others can be used, and more data are available for fitting in our 
approach than in the finite-size scaling approach. Our formulation is applicable to 
many other models. In order to test our theory we analyse the models which have 
exact solutions, namely the one-dimensional S = transverse king model [7, 81: 

71 = - Sf Sf+, - g Sy - H Sf (1.8) 
i i 

and the one-dimensional S = 4 XZ model [9, lo]: 

n=-csfs;+, -gcs:s:+, - H ~ S : .  (1.9) 
i i 

In section 2, the CAM is reviewed briefly. In section 3, the double-cluster approx- 
imation [ll-161 is formulated for quantum spin systems at T = 0. The mean-field 
critical point and critical coefficients of various thermodynamic quantities are calcu- 
lated. In section 4, the critical points and critical exponents of the relevant models 
are estimated using the CAM. These estimates are compared with the exact solutions, 
and the possibilities for further applications are pointed out. In section 5 ,  these de- 
scriptions are summarized. 

2. Coherent-anomaly method (CAM) 

The basic idea of the CAM [5, 61 is given as follows. When we evaluate a certain 
physical quantity Q in a mean-field or effective-field approximation using a certain 
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cluster (size L), the quantity Q diverges at the, mean-field critical point g = g,(L) as 

where 

E E (9  - gc(L) ) /g , (L)  (2.11) 

and pc1 is the classical critical exponent. If we choose some systematically constructed 
series of approximations (canonical series) and take the limit L - m, the mean- 
field critical point oc(L)  approaches the true one $ [6]; and the critical coefficient 
& + ( L , g , ( L ) )  asymptotically diverges as 

where 

(2.12) 

(2.13) 

This asymptotic behaviour of the critical coefficient is called the coherent anomaly, 
and such behaviour can be seen in finite-l systems. Then the critical point g z  and the 
exponent $ can be estimated from a series of approximations { g J L ) ,  Q i ( L , g c ( L ) ) ) .  
The true critical exponent 

(0 = iod + $. 

can be obtained [5; 61 from the following relationship, 

(2.14) 

These formulae cannot describe the singularity of m,. To do that we have to  
formulate the CAM more generally [5]. We start  Lrom the following scaling form (the 
finite-degree-of-approximation scaling form) for z zc and g ,  2: g : ,  

where E is a certain physical variable, and zc is its critical value. If we assume that 
the scaling form (2.15) describes the true critical behaviour 

m T )  w\-, N - (1. \- - I C ,  T )-V for T d I C  T (2.16) 

in the limit ge g : ,  we arrive a t  the coherent-anomaly relationship [5], 

(2.17) 

In fact, formulae (2.10)-(2.14) are the special cases of these general formulae, with 
z = g a n d p = I .  

In order to evaluate m, we should consider [5] the following asymptotic form, 

(Sz) B I 9=gc ~ 6 ( ~ , ) - @ m ~ H ' / ~  - f l  (") + 6 ( g , ) - ' - ' ~ H f ~ '  for H - 0 (2.18) 

$ 
P = io,, + ;. 
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which represents the singularities of m, and x+ at  the same time. When the asymp- 
totic form (2.18) satisfies the scaling form (2.15) (z = H ,  zc = 0), we obtain 

Y Nonomura ond M Suzuki 

and the critical exponent 6 defined in the formula (1.6) is given by 

3 0  + GX - kc) 6 =  
1 + $x - 3$,,,< 

(2.20) 

The CAM has already been applied to many problems (see the references cited in 
[17]), and its validity has been confirmed. However, its applications to quantum s y 5  
tems [12, 18, 191 are not very numerous at  present. One reason is that the justification 
of effective fields are not so easy in quantum systems, and another is that  only small 
clusters can be treated. As is well known, a zero-temperature D-dimensional quantum 
system represented by a Hamiltonian 7 i  is equivalent [ZO-221 to a (D+  1)-dimensional 
system represented by the ‘transfer-matrix’ e-n (an anisotropic limit of a classical 
system). Thus, our present approach is directly related to the transfer matrix CAM 
[!4$ 15, 29-25], in which good estimates can be obtained fromsmall clusters. A similar 
advantage is expected in our approach. The only difference is that  isotropic classical 
systems are treated in the transfer-matrix CAM. 

3. Double-cluster approximation for quaiituni spin systems at T = 0 

In the present section we formulate the double-cluster approximation [Il-161 for quan- 
tum spin systems at  T = 0. In order to show the calculation scheme explicitly, we 
treat the one-dimensional S = transverse king model as an example. Both an 
equation to determine the mean-field critical point and expressions for various critical 
coefficients are obtained explicitly. Generalization to the one-dimensional S = XZ 
model and other models is straightforward. 

Figure 1. The way in which the effective field is applied to NA- and Ne-spin clusters 
in the double-cluster approximation. 
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9.1. Egective Hnmilfoninn and self-consistency condifions 

We investigate the one-dimensional S = $ transverse king model (1.8) using the 
double-cluster approximation. In this approximation we consider two diflerent clusters 
A and B, and apply the sume effective field H e ,  to their boundary spins (figure 1). 
In principle, effective fields are applied not only on the boundary spins, but also on 
all the spins of the relevant clusters in the effective-field approximations in quantum 
spin systems. From a physical standpoint of view, this simplification is regarded aa 
a first-order approximation, in which only the most important effective field is taken 
into account. The effective Hamiltonian of the N,-spin cluster (I z A or B) is given 
by 

'IN, = 71p + x p  i x p  (3.1) 
with 

i=I 

N ,  
&@") = -H 3 

N, 
i=1 

X$p' = -Hefl(S; + S;,). 

The required self-consistency condition is 

where (. . .)I denotes the ground state average in the  system represented by H N , .  This 
is a kind of effective-field approximation, and derivation of its coherent anomaly h a  
been given by the present authors and N Hatano [ZS] in a more general form. 

When g is larger than a critical value g,, the solution of equation (3.5) is always 
H e ,  = 0 for H = 0. On the other hand, when g is smaller than gc, equation (3.5) 
has a non-zero solution even for H = 0. It corresponds to the spontaneous symmetry 
breaking of the system. In order to calculate the value of HeRI we have to solve this 
nonlinear equation directly, However, if we are only interested in critical phenomena, 
it is enough for us to treat the system in the vicinity of the mean-field critical point 
g = gc. In this region the external field N and the effective field H e ,  are taken to be 
infinitesimal. Then it is possible to expand equation (3.5) with respect to H and He=, 
which is nothing but  the perturbation expansion of the order parameter with respect 
to H and He%. 

Following the standard perturbation theory, the ground state of XN, is expressed 
as a power series of H and He,, and consequently the order parameter of the cluster 
I is given by 
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2 2 + [(E!, - E i ) 2 ( E f ,  - E;) (E!, - Ei) (Ef ,  - 

2 P'H, + Q'H& + R'H +. . 
where denotes the sum over all the excited states, and 

n f s  

Here, Ig)'.is the ground state of 'If$?, and In)' is the nth excited state of 'If$:). 
The parameters E: and Ef, are the energies of 1s)' and In)', respectively. In this 
caicuiation we have used the iacts that the ground state oiXN, is not degenerate and 

that the unperturbed ground state average of the order parameter - c ( g l S i  1s)' 

and the terms proportional to H&, HH,, and H 2  vanish because of the symmetry of 
the system. 

3.2. Calculaiion of critical coeficients 

The mean-field critical point and various critical coefficients are calculated as follows, 
just as in the transfer-matrix CAM [14, 15, 23-25]: 

(i) Mean-field crifical point. In this approximation equation (3.5) should he satis- 
fied, no matter how small the value of Her is. In such a case the higher-order terms 
of formuia (3.6j can be neglected. Thus, inverseiy, the mean-fieid criticai point gc is 
determined as the solution of the following equation, 

1 

i= l  

P A  = P B .  (3.10) 

(ii) Susceptibility for  g > gc. Above the critical point only the linear terms of 
equation (3.5) should be considered, and the susceptibility just above the critical 
point is given by 

(3.11) 
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The derivative a H e f l / a H I H = O  in (3.11) can be determined from the condition (3.5), 
namely xA = xB. Thus, we obtain 

(RA - RB) + (PA - P B ) m  aHefl I H = O  = 0. 

Then x' is given by 

(3.12) 

(3.13) 

and the denominator of the second term of the right-hand side vanishes at g = gc. I t  
corresponds to the classical singularity, i.e. r,, = 1. 

Finally, the susceptibility at g = g, + 0 is given by 

(3.14) 

(3.15) 

where 2: = f B  because of the condition (3.10). The explicit expression of the de- 
nominator of x+ IS given In the appendix. Practically, this value can be calculated 
precisely enough by numerical differentiation. 

(iii) Sponianeous magnetization. The spontaneous magnetization m: appears be- 
low the critical point, because the effective field He, takes a non-vanishing value. In 
order to determine the valueof Heff a t  g = g,-O, we have to consider up to third-order 

- > .  . . 

texxs io e-,s-';so (3.5) sod se? II = 0. we G b t r .  

or 

Then the spontaneous magnetization is given by 

(3.17) 

(3.18) 

(3.19) 

where 61: = 
(iv) Susceptibility for g < 9,. Although the susceptibility just below the critical 

point is given by the same formula as (3.11), the value of aHei,,/aHl,=, is different 
from the one given by equation (3.12) because of Her # 0. i.e. 

because of the condition (3.10). 

(RA - RB) + [ (PA - PB)  + 3 ( Q A  - QB)H&]-  (3.20) 
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01 

1 1  RA - RB 
2 9, - 9 d ( P A  - PB)/dgl,,gc 

- RA - RB = -  
( P A  - P B )  + 3(QA - QB)H& - 

H=O 
aH 

(3.21) 
where we have used the expression (3.17). 

Finally, the susceptibility at 0 = gc - 0 is given by 

(3.22) 

(3.23) 

(v) Crifical magnetization. At the critical point we have to consider up to third- 

- I  - 1 -I  x-  - TX+ 

where = Z!. 

order terms of equation (3.5). Since PA - PB = 0, we obtain 

RA - R ~  113 
He,=  [- ] H1I3 

QA - QB 
Then the critical magnetization is given by 

mc I - - mc - I , y I l & ,  6,, = 3 

(3.24) 

(3.25) 

(3.26) 

where 61: = 7%:. 

(vi) 'Specific heat'for g > 9,. Here C1 is called the 'specific heat' for convenience, 
because i t  is analogous to the specific heat of the corresponding two-dimensional 
model. Above the critical point the ground state of each cluster is Is)', and we obtain 

In this calculation we have used the following relationship, 

(3.28) 

(3.29) 

which is derived in the appendix. 

4. Estimation of non-classical critical exponents and discussion 

In ?he present section we list the data from various approximations and analyse them 
using the CAM. The values of the critical points and critical exponents of the relevant 
models are estimated by a least-squares fitting. These estimates are compared with 
the exact solutions, and further discussion is given. 
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4.1. One-dimensional S = 
Although there are many kinds of approximations according to choices of N A  and N B ,  
we consider the A N  NB - N A  = 1 or 2 approximations here. The A N  = 1 series of 
approximations are consistent with the phenomenological derivation of the coherent 
anomaly of the doublecluster approximation [26], which is based on the assumption 
that the sizes of the two clusters are close to each other. In the A N  = 2 series of 
approximations, the relevant two clusters have the same character, namely in both 
clusters the numbers of spins are odd or even. The values of 9, and various critical 
coefficients of the AN = 1, NA = 1-8 and A N  = 2, N A  = 1-7 approximations are 
given in table 1. 

transverse Ising model 

Table 1. The mean-fieldcriticalpoint andcritical coefficientsofthe onedimmsiond 
S = $ transverse Ising model. 

1 2 
1 3 
2 3 
2 4  
3 4 
3 5  
4 5  
4 6  
5 6  
5 7  
6 7 
6 8  
7 8  
7 9  
8 9  

0.638371 
0.615713 
0.592684 
0.581452 
n.57(1(139 
0.563272 
0.556406 
0.551867 
0.547267 
0.544006 
0.540704 
0.538243 
0.535 755 
0.533832 
0.531889 

1.3134 
1.5134 
1.7821 
1.9716 
2.2052 
2.3862 
2.5994 
2.7735 
2.9727 
3.1410 
3.3298 
3.4932 
3.6737 
3.8328 
4.0066 

1.0947 
1.1164 
1.2689 
1.3291 
1.4n99 
1.4634 
1.5309 
1.5794 
1.6380 
1.6825 
1.7349 
1.7762 
1.8238 
1.8624 
1.9062 

1.1632 
1.2706 
1.4210 
1.5158 
1.5355 
1.7225 
1.8264 
1.9054 
1.9980 
2.0717 
2.1561 
2.2254 
2.3033 
2.3689 
2.4417 

0.0000 
0.0000 
0.1174 
0.1233 
0.2036 
0.2102 
0.2724 
0.2786 
0.3295 
0.3353 
0.3785 
0.3837 

0.4259 
0.4591 

0.4212 

0.0970 
0.1654 
0.1834 
0.2408 
(1.2546 
0.3031 
0.3141 
0.3560 
0.3650 
0.4017 
0.4094 
0.4420 
0.4486 
0.4780 
0.4838 

We have made a least-squares fitting for various combinations of approximations. 
For the estimation of y, /3 and 6 we have assumed the simple CAM scaling form (2.15) 
and neglected higher-order correction terms. Generally speaking, approximations ob- 
tained from smaller clusters do not give good scaling properties, and these are not suit- 
able for fitting. On the other hand, if we use only a few approximations obtained from 
larger clusters, the range of 9, is narrower and the error of fitting becomes larger. We 
start  from the series which consists of all the approximations listed in table 1, and leave 
out the approximations obtained from the smallest pair of clusters in the series one by 
one. The estimates obtained from this procedure are not consistent with one another 
a t  the first stage, and come to be consistent after a few approximations are excluded. 
Here we have determined our estimates from the following two series of approxima- 
tions: ( N A ,  N B )  = (2,4),(3,4),  . .. , (8,9) and ( N A ,  NB) = (3,4),(3,5),  . .., (8,9). The 
temporary estimates of the critical exponents and their corresponding critical points 
are given in table 2, where the values and errors are determined to include the ones 
obtained from these two series. Here 'errors' indicate the standard deviations in the 
estimates obtained by the fitting. Although there exist three free parameters (namely 
the critical point g:, the exponent + and the constant f'")) in the fitting, the errors 
are small, This fact shows that these series of approximations are highly canonical, 
and that the scaling form (2.15) is adequate (see figure 2). 
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Table 2. The estimates of the critical exponents (CE) and the corresponding values 
of the critical point of the one-dimensional S = 4 transverse bing model. The 
exponent a' ( I  E A or B) denotes the estimate obtained from the duster I. The 
notation y = 1.760(9) me- y = 1.760 * 0.009. The emon in y. P and 6 indicate the 
standarddeviations in the estimates by theleast-squares fitting, and those of a* and 
0 1 ~  stand for the difference of the estimates obtained from the AN = l , N A  = 6 8  
approximations and the AN = l.N* = 5-7 approximations. 

Exponents y P 6 a* aB 

Values of CE 1.760(9) 0.125(7) 15.1(6) O(l0g) O ( W  
Values of g: 0.4999(6) 0.5011(8) 0.5005(1) 0.5013(7) 0.5038(13) 

The logarithmic singularity of C: cannot be expressed by the form (2.15). Instead, 
we have assumed the following form [23] 

The quantity C: slowly converges to the form (4.1), and the previous procedure for 
fitting cannot be used in (4.1). The estimates of g: given in table 2 are obtained from 
the following two series of approximations: A N  = 1, N A  = 6-8 and AN = 1, NA = 5- 
7. The values of gzs are given by the former one, and the errors of them indicate 
the difference of the estimates obtained from each one. The A N  = 1 or 2 series of 
approximations do not belong to the same canonical series in C:, because i t  is not the 
critical coefficient but the thermodynamic quantity itself, and the terms which do not 
show the coherent anomaly (for example, the first term of equation (3.13)) may be 
included in it. On the other hand, if we use the form (2.15), we have g: = 0.391(78) 
(I E A) or g: = 0.453(13) (I E B) from the same series of approximations. These 
values are not consistent with the estimates obtained from other critical coefficients 
a t  all. Thus, in the CAM framework we can conclude that C: shows a logarithmic 
divergence at the critical point. 

4.2. One-dimensional S = i XZ model 

In this model the ground states of even-spin clusters are singlet, and those of odd-spin 
clusters are two-fold degenerate. Thus, we have to treat even-spin clusters in order to 
know the behaviour of the infinite system, in which the ground state is singlet. In fact, 
the series of approximations obtained from odd-spin clusters do not show the coherent 
anomaly well. Here we consider the A N  = 2, N A  = 2-10 and A N  = 4, N A  = 2-8 
approximations. The values of g, and various critical coefficients are given in table 3. 

We have made the least-squares fitting just as in the one-dimensional S = 
transverse king model. The temporary estimates of the critical exponents and their 
corresponding critical points are given in table 4. The estimates of -y,P and 6 are 
obtained from the ( N A ,  NB) = (4,6), (4,8), . . . , (10,lZ) series of approximations and 
the (NA,NB) = (4,8),(6,8),...,(10,12) one, and those of (I' are obtained from the 
AN = 2, N A  = 8,10,12 one and the A N  = 2, N A  = 6,8,10 one. Because of the 
restriction that N, should be even, we have used the AN = 4 series of approximations 
to increase the number of data for fitting, Although there is no such justification for 
the A N  = 4 series as for the A N  = 2 series, these results show that these series of 
approximations are also highly canonical (see figure 3). 
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Table 3. The mean-field critical point and critical coefficients of the one-dimensional 
S = $ XZ model. 

NA NE gc i t  7% e: e+" 
2 4 1.143440 2.0854 0.9407 1.2266 0.00000 0.03652 
2 6 1.121 763 2.2650 0.9761 1.2923 0.00000 0.05997 
4 6 1.099750 2.5219 1.0256 1.3843 0.03875 0.06184 
4 8 1.088179 2.6798 1.0553 1.4397 0.03938 0.07978 
6 8 1.076511 2.8851 1.0929 1.5105 0.06390 0.081 13 
6 10 1.069325 3.0278 1.1186 1.5590 0.06456 0.09568 
8 10 1.062095 3.2037 1.1495 1.6177 0.08285 0.09670 
8 12 1.057198 3.3351 1.1723 1.6611 0.08344 0.10893 
10 12 1.052275 3.4914 1.1987 1.7119 0.09811 0.10974 

T&!e 4; The estir%?eJalthe cri!lcd~xpnnm!. (CE) and !he c~.elp""'""pm!"es..rf 
the critical point of the one-dimensional S = 5 XZ model. The exponent ar (I E A 
or E) denotes the estimate obtained from the cluster 1. The notation y = 1.52(4) 
means y = 1.52 f 0.04. The emom in y,R and 6 indicate the standard deviations 
in the estimates by the least-squares fitting, and those of 01' and eB stand for the 
differenceof thaestimatesobtajnedfrom the AN = ~ , N A  = 8,10,12approximations 
and the A N  = 2 , N n  = 6,8,10 approximations. 

~~~ 

Exponents y 4 6 ,A 2 

Values of CE 1.52(4) 0.264(16) 6.8(1.1) O(L0g) O(1Og) 
Values of g: 0.998(6) 1.002(5) 0.999(4) 0.991(9) 1.005(3) 

4.9. Discussion 

The one-dimensional S = transverse king model was solved by S Katsura [7] and 
P Pfeuty (81, and the one-dimensional S = $ XZ model was solved by E Lieb, T 
Schultz and D Mattis [9] and B M McCoy [lo]. These solutions are listed in table 5 
together with our final estimates, in which the values and errors of the critical points 
are determined to include all the estimates obtained from the least-squares fitting of 
various criiicai weiiicienw excepi LOI b+. VUI z s u i u a ~ s  aut uit. C A ~ U  DVIUIIIYLID 

consistent with each other, which shows that our approach is powerful for the study 
of zeretemperature phase transitions of quantum spin systems. 

. . : . : ~ - I  . . . m ~ : ~ ~ ~ & -  ..... ~~1 r.- -1 a..- --.: _^,^^ - - A  ,LA -..-", L..- "_^ 

Table 5. The estimates and the exact sol-tions of the critical points and critical 
exponents of (a)  the one-dimensional S = transverse king model and ( a )  the on& 
dimensional S = 4 XZ model. The 'exact' exponents y and 6 are obtained from 
other exact values and the scaling relations. 

~~ ~ 

Quantities 7 4 6 a s: 
~~ ~ ~ 

(a)  Our estimates 0.5005(14) l.TGO(9) 0.125(7) 15.1(6) O(log) 

( b )  Our estimates I . O O O ( 8 )  1.52(4) 0.264(16) G.8(1.1) O(l0g) 
Exact solutions 17, 81 0.5 1.75 0.125 15 O ( h 3 )  

Exact solutions 19, IO] 1 1.5 0.25 7 O ( W  

The phenomenological derivation of the double-cluster approximation [26] is based 
on the finitesize scaling hypothesis, namely based on the assumptions that the size 
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of each cluster is large enough and that the two clusters have the same shape and 
their sizes are close to each other. However, the results obtained in the present section 
show that  the approximations using small clusters or large-AN pairs of clusters are 
also canonical. These facts suggest that in the double-cluster approximation the CAM 
scaling is satisfied beyond the range of validity of the finite-size scaling. This property 
is expected to he useful when we treat higher-spin or higher-dimensional systems, 
because many approximations can be obtained from several clusters. 

In the present paper we have tried to estimate the critical exponents not only of 
the disordered phase (y and a), hut also of the ordered phase (p)  and at the critical 
point (6). For this purpose we have had to calculate all the excited states of the cluster 
Hamiltonian, and consequently we can only treat small clusters because of the limited 
memories of computers. However, if we only want to know the critical phenomena 
of the disordered phase, it is possible to calculate X'+ and C: using only the ground 
state of the cluster Hamiltonian and numerical differentiation with respect to H ,  He, 
or g at most twice. On the other hand, in order to evaluate mi and mt, we have to 
perform this numerical differentiation four times, which is practically difficult because 
of the limited accuracy of the numerical computations. 

Thus, using the Lanczos algorithm we can treat rather large clusters, the sizes 
of which are comparable with those used in the finite-size scaling method [4]. Then 
our approach is expected to give better results than those obtained from the finite-size 
scaling method, because much more data are available for fitting in our scheme. Using 
this technique we are now studying two-dimensional quantum spin systems and S = 1 
quantum spin systems. 

Y Nonomura and M Suzuki 

5. Summary 

In the present paper we have formulated the double-cluster approximation for quantum 
spin systems at  T = 0, and we have estimated not only the critical points but also 
the critical exponents y, p, 6 and a of the one-dimensional S = 4 transverse Ising 
model and the one-dimensional S = 4 XZ model using the CAM. Our estimates are 
in good agreement with the exact solutions, which shows that the CAM works well in 
zero-temperature phase transitions of quantum spin systems. Studies by ns are now 
in progress to apply the present method to higher-dimensional quantum spin systems 
and higher-spin quantum spin systems. 
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Appendix 

Here we briefly derive the explicit expression of the derivative dP'/dgl,,,c (I 
B). 

A or 

At first we differentiate the Schrodinger equation of the unperturbed Hamiltonian 
7 @ ,  

with respect to g, and expand the derivative d!n)'/dg in terms of {lm)'), i.e. 

After a short calculation we obtain 

because 1s)' is not degenerate. 
Then after some straightforward calculation the derivative dP'/dgl,,,c is given 

by 
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