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Tokyo 113, Japan
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Abstract. A cluster-effective-field theory, called the double-cluster approximation,
is formulated for quantum spin systems at T = 0. Combining this approximation
with the coherent-anomaly method (CAM), critical phenomena in such systems can be
analysed. To test our theory, we have estimated the critical points and critical expo-
nents of the one-dimensional § = % transverse Ising model and the one-dimensional
S5 = % XZ model. Our estimates are in good agreement with the exact solutions.
These results show that the CAM approach is useful in treating zero-temperature
phase transitions in quantum spin systems.

1. Imtroduction

Recently the ground state properties of quantun spin systems have been intensively
studied, especially in antiferromagnetic systems or frustrated systems. In these sys-
tems phase transitions may even occur at T = 0 as a parameter of the Hamiltonian
is varied. For simplicity, we consider a zero-temperature ferromagnetic quantum spin
model described by the following Hamiltonian:

M =H — gH,, (1.1)
with a quantum interaction #,, satisfying
[H[slﬂqu]— ?E 0 (12)

and
Hp=—9 SiSi—HY 8 (1.3)
(i) i
where Z denotes the sum over ail the nearest-neighbour bonds. Since Hy, is the Ising
{3}
Hamiltonian, ($*), (the ground state average of 5%) is the order parameter of this

model. Tt displays critical phenomena in the vicinity of a certain critical point g = g2.
The critical exponents are defined as follows:
1
— forg—gt+0
0 (9 —g) ¢ '
a—g(Sz)g . x lc ; _— (14)
=0 Y orgqg—g. —
(95 —9)" ‘
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m, = (Sz)g|H=0 o (g; _g)ﬁ for g— g: -0 (15)
m, = <Sa)g|g=g; o« HY® for H—0 (1.6)
Lt forg—g: 40

I (v - g2)° T
C= 6—9(Hqu)g x 1 ‘ (17)

T ot forg— g2 — 0.
{{oz — ) gog-0

"Until the present time, quantum spin models of this type at 7' = 0 have often been
treated by the phenomenclogical renormalization-group and finite-size scaling methods
[1, 2]. In these methods each finite-size cluster is characterized by its linear size. Then
only regular clusters (for example, on the square lattice, 2x2,3x 3,44, ... ones) can
be used for the estimation of the critical point and critical exponents. Although these
methods are useful in one-dimensional systems {3] and some simple two-dimensional
systems [4], it is generally difficult to apply them to higher-dimensional systems, be-
cause only a few clusters are available owing to the limited memories of computers.

In the present paper we propose a new approach to treat zero-temperature phase
transitions of quantum spin systems, using the coherent-anomaly method (CaM) [5,
6] proposed by one of the present authors (MS). In the CAM, non-classical critical
exponents are estimated from a series of mean-field or effective-field approximations.
Each approximation has the mean-field critical point g,., and the approximation is
characterized by the ‘degree of approximation’ g, — g>. Then not only regular clusters
but also some others can be used, and more data are available for fitting in our
approach than in the finite-size scaling approach. Our formulation is applicable to
many other models. In order to test our theory we analyse the models which have
exact solutions, namely the one-dimensional § = 1 transverse Ising model [7, 8]:

M=- SiSi, -9y ST—HY S (1.8)
i H i
and the one-dimensional S = 4 XZ model {9, 10]:
H=—> SiSi,—g) Sist,—-H)Y Si. (1.9)
] i i

In section 2, the CAM is reviewed briefly. In section 3, the double-cluster approx-
imation [11-16] is formulated for quantum spin systems at T = (. The mean-field
critical point and critical coefficients of various thermodynamic quantities are calcu-
lated. In section 4, the critical points and critical exponents of the relevant models
are estimated using the CAM. These estimates are compared with the exact solutions,
and the possibilities for further applications are pointed out. In section 5, these de-
scriptions are summarized.

2. Ccherent-anomaly method (CAM)

The basic idea of the CAM [5, 6] is given as follows. When we evaluate a certain
physical quantity @ in a mean-field or effective-field approximation using a certain
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cluster (size L), the quantity @ diverges at the mean-field critical point g = g_(L) as
Q+(Lv gc(L))

ePel

for g —g.(L)+0

QL9 =1 A (2.10)
ELa@) g1y -0
(—f)‘Pc!
where
€= (g —9g.(L))/9.(L) (2.11)

and ¢ 1s the classical critical exponent. If we choose some systematically constructed
series of approximations (canonical series) and take the limit L — oo, the mean-
field critical point g_(L) approaches the true one g% [6], and the critical coefficient
Q@4(L,g.(L)) asymptotically diverges as

Qu(L,9u(L)) = m}g (2.12)
where
5(g.(L)) = g—@-g‘—g (2.13)

This asymptotic behaviour of the critical coefficient is called the coherent anomaly,
and such behaviour can be seen in finite-L systems. Then the critical point g% and the
exponent 1 can be estimated from a series of approximations {g.(L), @.(L,¢.(L))}-
The true critical exponent ¢ can be obtained [5, 6] from the following relationship,

P =Pat . (2.14)

These formulae cannot describe the singularity of m,. To do that we have to
formulate the CAM more generally [5]. We start {rom the following scaling form (the
finite-degree-of-approximation scaling form) for r =~ ¢, and g_ = g7,

Qege) = (2 = 207 (o - g2 o9 (2225 (2.15)

where « is a certain physical variable, and z_ is its critical value. If we assume that
the scaling form (2.15) describes the true critical behaviour

O(-r\nrf'r.—x\_"p forr — r 9 18\
b ASd I St c/ e \a-1uy
in the limit g, — g%, we arrive at the coherent-anomaly relationship [5],
Y
p= goc1+;. (2.17)

In fact, formulae (2.10)-(2.14) are the special cases of these general formulae, with
r=gand pg=1
In order to evaluate m_ we should consider [5] the following asymptotic form,

(5 Vglomg, = 8(ae) P HIB D L 8(g )T " H S for H =0 (2.18)
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which represents the singularities of m_ and x, at the same time. When the asymp-
totic form (2.18) satisfies the scaling form (2.15) (z = H, z_ = 0}, we obtain

p=3{1+ 6 ) (2.19)
and the critical exponent & defined in the formula (1.6) is given by

5 31+ 9, —¥,,.)
T o1ty -3,

(2.20)

The CAM has already been applied to many problems (see the references cited in
[17]), and its validity has been confirmed. However, its applications to quantum sys-
tems [12, 18, 19] ate not very numerous at present. One reason is that the justification
of effective fields are not so easy in quantum systems, and another is that only small
clusters can be treated. Asis well known, a zero-temperature J-dimensional quantum
system represented by a Hamiltonian M is equivalent [20-22] to a (D + 1)-dimensional
system represented by the ‘transfer-matrix’ =" (an anisotropic limit of a classical
system). Thus, our present approach is directly related to the transfer matrix CAM
[14,15, 23-25], in which good estimates can be obtained from small clusters. A similar
advantage is expected in our approach. The only difference is that isotropic classical
systems are treated in the transfer-matrix CAM.

3. Double-cluster approximation for quantum spin systems at T =0

In the present section we formulate the double-cluster approximation [11-16] for quan-
tum spin systems at T' = 0. In order to show the calculation scheme explicitly, we
treat the one-dimensional § = % transverse Ising model as an example. Both an
equation to determine the mean-field critical point and expressions for various critical
coefficients are obtained explicitly. Generalization to the one-dimensional § = % XZ

model and other models is straightforward.

1 g ,_3’ ______ Nz
1 Cluster A 1

1 2 3 4 Ng

Figure 1. The way in which the effective field is applied to N4 - and Np-spin clusters
in the double-cluster approximation.
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3.1, Effective Hamillonian and self-consistency conditions

We investigate the one-dimensional S = } transverse Ising model (1.8) using the
double-cluster approximation. In this approximation we consider {wo different clusters
A and B, and apply the same effective field H g to their boundary spins (figure 1).
In principle, effective fields are applied not only on the boundary spins, but also on
all the spins of the relevant clusters in the effective-field approximations in guantum
spin systems. From a physical standpoint of view, this simplification is regarded as
a first-order approximation, in which only the most important effective field is taken
into account. The effective Hamiltonian of the Ny-spin cluster (I = A or B} is given
by

My = HG +H + 1D (3.1)
with
, Ni—1 Ny
W =~ Y SiSi,—ay S (3.2)
=] t=1
N
HeW = —HY 8 (3.3)
i=1
eff
H = ~HoglS] +5%,) (34)
The required self-consistency condition is
1 &, a1 & g
W Do = A Z(Sﬂg (3.5)
A =l Bimy
whete {-- )\ denotes the ground state average in the systern represented by My, . This

15 a kind of effective-field approximation, and derivation of its coherent anomaly has
been given by the present authors and N Hatano [28) in a more general form.

When ¢ is larger than a critical value g, the solution of equation (3.5) is always
H.g = 0 for H = 0. On the other hand, when g is smaller than g, equation (3.5)
has a non-zero solulion even for H = 0. It corresponds to the spontaneous symmetry
breaking of the system. In order to calculate the value of H, g, we have to solve this
nonlinear eguation directly. However, if we are only interested in critical phenomena,
it is enough for us to freat the system in the vicinity of the mean-field critical point
g = ¢.. In this region the external field /{ and the effective field / 4 are taken to be
infinitesimal. Then it is possible to expand equation (3.5) with respect to H and H g,
which is nothing but the perturbation expansion of the order parameter with respect
to H and H 4.

Following the standard perturbation theory, the ground state of Hy, is expressed
as a power series of H and H ., and consequently the order parameter of the cluster
1 is given by

Ni
T LS = B 2l iy ol 1) e

i=} I g

+ Hiﬁ{ f,— > 2 2 alstin) nlSiim) (miSE N (15T |9}

Laggmag ts
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+ {n|S; Im) (1S 19)Hg|SE 1 (1S5 In))
2
(EL - ED(EL, — EJNE| - EY)

e 3 3 oIS I (n1S )15 ol )

nEgmgy

X

2 2
| E = EyEL — B T (BL - ByEY, - E},)?] }

1 I 1 2
+Hy 2 (01SE ) IS¢ 1Y G+ (36)
n#g g
= PlH+QHS+RH+- . (3.7
where z denotes the sum over all the excited states, and
n#g

5 =51 + 5%, {3.8)

Ni
si=Y st (3.9)

i=1

Here, |g)! is the ground state of ’HS\C,:), and |n)! is the nth excited state of H(Nc:).
The parameters E; and EL are the energies of |g}! and |n)!, respectively. In this
calculation we have used the facts that the ground state of H, is not degenerate and
N
1
that the unperturbed ground state average of the order parameter FZ(g!Sﬂg)I
i=1
and the terms proportional to HZ;, HH 4 and H 2 vanish because of the symmetry of
the system.

3.2. Calculation of critical coefficients

The mean-field critical point and various critical coefficients are calculated as follows,
just as in the transfer-matrix CAM {14, 15, 23-25]:

(i) Mean-field critical peint. In this approximation equation (3.5) should be satis-
fied, no matter how small the value of H g is. In such a case the higher-order terms
of formula (3.6) can be neglected. Thus, inversely, the mean-field critical point g_ is
determined as the solution of the following equation,

PA = PB, (3.10)

(ii) Susceptibility for g > g.. Above the critical point only the linear terms of
equation (3.5) should be considered, and the susceptibility just above the critical
point is given by

o (1, . 8H,
X" 30 (F Y (s );) =Rl + Pl—ﬁ—'i : (3.11)
Iz H=0 H=0
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The derivative H /0H |y in (3.11) can be determined from the condition (3.5),
namely x* = xB. Thus, we obtain

H
(R* - RM) 4+ (P* - PB)——aa =t =0 (3.12)
H=0
Then x! is given by
pl RA_ RB
N o

and the denominator of the second term of the right-hand side vanishes at g = g.. It
corresponds to the classical singularity, i.e. v, = 1.
Finally, the susceptibility at g = g_+ 0 is given by

= 5(5— (“‘gi_)m Yo =1 (3.14)
[P
1 PYRA—RP)
_] -
X+ = = AR - FR)dgl, . (3.18)

where ¥4 4= 2 ¢ because of the condition (3.10). The explicit expression of the de-
nominator of %% is given in the appendix. Practically, this value can be calculated
precisely enough by numerical differentiation.

(iti) Spontaneous magnetization. The spontaneous magnetization m. appears be-
low the critical point, because the effective field H_g; takes a non-vamshmg value. In

order to determine the value of H, ¢ at g = g.—0, we have to consider up to third-order
torme 1n nnnnf\nn 2R\ and sni‘ H — n Wa nbta:x‘ﬁ

VOL114O0 sax pRS 2R RV I - A ) Tre U

(P2~ PP)H g+ (Q* - Q®)H = (3.16)
or

Hag= (5. - " ar Pf)cgig[g gcl 2- (3.17)
Then the spontaneous magnetization is given by

= il (gcg: g)ﬁ” fu=1i (3.18)

7l = gl/2pt d(pA éAP_B)C»;C;Q’tg-—-yc:llﬁ (3.19)

where m2 = mP because of the condition (3.10).

(w) Susceptzb:hiy for g < g.. Although the susceptibility just below the critical
point is given by the same formula as (3.11), the value of dH 4/0H |g_, is different
from the one given by equation (3.12) because of H g # 0. i.ec.

OH .5

(RA ~ B®) +[(P* ~ P?) +3(Q" - Q") Heal 51"

=0  (3.20)
H=0
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or
dHq L RA - RB _ 11 RA - RB
OH | _ — (PA-PB)+3(QA-QP)HY — 2g.-gd(PA -~ PB)/dgl,_,
(3.21)
where we have used the expression (3.17).
Finally, the susceptibility at ¢ = g_ — 0 is given by
1_ =1 9 T =1

X =X (gc _g) Yo = (3.22)
L= %il+ (3.23)

where )2’}_ = )Z_.
(v) Critical magnetization. At the critical point we have to consider up to third-
order terms of equation (3.5). Since PA — PP = 0, we obtain

1/8
Hao= [ e (3.24)
Then the critical magnetization is given by
ml = ml (/% by =3 (3.25)
1 _ gB1Y/?
R (3.26)
A -B

where mZ = ..

{vi) ‘Specific heat’ for g > g.. Here C" is called the ‘specific heat’ for convenience,
because it is analogous to the specific heat of the corresponding two-dimensional
model. Above the critical point the ground state of each cluster is |_q)I and we obtain

1d
I _ -+ = 1 ]
C = 5 g Istla)! = g;g(gls”ln) oIS g B
with
Ny
CHED I (3.28)
i=
In this calculation we have used the following relationship,
19)‘ > ImKn|STleY 5 (3.29)
n#y

which is derived in the appendix.

4. Estimation of non-classical critical exponents and discussion

In the present section we list the data from various approximations and analyse them
using the CAM. The values of the critical points and critical exponents of the relevant
models are estimated by a least-squares fitting. These estimates are compared with
the exact solutions, and further discussion is given.
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4.1. One-dimensional § = é transverse Ising model

Although there are many kinds of approximations according to choices of N, and Ny,
we consider the AN = Ny — N, = 1 or 2 approximations here. The AN = 1 series of
approximations are consistent with the phenomenological derivation of the coherent
anomaly of the double-cluster approximation {26], which is based on the assumption
that the sizes of the two clusters are close to each other. In the AN = 2 series of
approximations, the relevant two clusters have the same character, namely in both
clusters the numbers of spins are odd or even. The values of g, and various critical
coefficients of the AN = |, N, = 1-8 and AN = 2, N, = 1-7 approximations are
given in table 1.

Table 1. The mean-field critical point and critical coefficients of the one-dimensional
S= % transverse Ising model.

Na Ng gc X+ s g Ci CE

1 2 0.638371 1.3134 1.0947 1.1632 0.0000 0.,0970
1 3 0.615713 1.56134 1.1164 1.2706 0.0000 ‘ 0.1654
2 3 0.592684 1.7821 1.2689 1.4210 0.1174 0.1834
2 4 0.581452 1.8716 1.3201 1.5158 (.1233 0.2408
3 4 0.570039 2.2052 1,4009 1.6366 0.2036 0.2548
3 5 0.563272 2.3862 1.4634 1.7225 (.2102 0.3031
4 5 0.556 406 2.5994 1.5309 1.8264 0.2724 0.3141
4 6 0.551867 27735 1.5794 1.9054 0.2786 0.3560
5 6 0.547 267 2.9727 1.6380 1.9980 0.3295 0.3650
5 i 0.544 006 3.1410 1.6825 2.0717  0.3353 0.4017
[} 7 0.540 704 3.32908 1.7349 2.1561 0.3785 0.4094
6 8 0.538243 3.4932 1.7762 2.2254 0.3837 0.4420
7 8 0.535755 3.6737 1.8238 2.3033 0.4212 0.4486
7 9 0.533832 3.8328 1.8624 2.3689 0.4259 0.4780
8 9 0.531 889 4.0066 1.9062 2.4417  0.4591 0.4838

We have made a least-squares fitting for various combinations of approximations.
For the estimation of v, # and é we have assumed the simple CAM scaling form (2.15)
and neglected higher-order correction terms. Generally speaking, approximations ob-
tained from smaller clusters do not give good scaling properties, and these are not suit-
able for fitting. On the other hand, if we use only a few approximations obtained from
larger clusters, the range of g_ is narrower and the error of fitting becomes larger. We
start from the series which consists of all the approximations listed in table 1, and leave
out the approximations obtained from the smallest pair of clusters in the series one by
one. The estimates obtained from this procedure are not consistent with one another
at the first stage, and come to be consistent after a few approximations are excluded.
Here we have determined our estimates from the following two series of approxima-
tions: (N, Ng) = (2,4),(3,4),...,(8,9) and (N, Np) = (3,4),(3,5),...,(8,9). The
temporary estimates of the critical exponents and their corresponding critical points
are given in table 2, where the values and errors are determined to include the ones
obtained from these two series. Here ‘errors’ indicate the standard deviations in the
estimates obtained by the fitting. Although there exist three free parameters (namely
the critical point g%, the exponent ¥ and the constant f(*<) in the fitting, the errors
are small. This fact shows that these series of approximations are highly canonical,
and that the scaling form (2.15) is adequate (see figure 2).
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Table 2. The estimates of the critical exponents (CE) and the corresponding values
of the critical point of the one-dimensional § = % transverse Ising model. The
exponent ! (I = A or B) denotes the estimate obtained from the cluster I. The
notation v = 1.760(9) means - = 1.760%0.009. The errors in v, 3 and § indicate the
standard deviations in the estimates by the least-squares fitting, and those of a® and
oF stand for the difference of the estimates obtained from the AN = 1,N, = 6-8
approximations and the AN = 1, N, = 5-7 approximations.

Exponents ¥ B 8 at aB

Values of CE  1.760(9}) 0.125(7) 15.1(8) 0(log) O(log)
Values of g°  0.4999(6) 0.5011(8)  0.5005(1) 0.5013(7)  0.5038(13)

The logarithmic singularity of C%. cannot be expressed by the form (2.15). Instead,
we have assumed the following form [23]

C(9.) ~ a'log(g, — g2) + b". (4.1)

The guantity Ci slowly converges to the form (4.1), and the previous procedure for
fitting cannot be used in (4.1). The estimates of g given in table 2 are obtained from
the following two series of approximations: AN = 1,N, =6-8and AN =1, N, =5~
7. The values of g}s are given by the former one, and the errors of them indicate
the difference of the estimates obtained from each one. The AN = 1 or 2 series of
approximations do not belong to the same canonical series in C1, because it is not the
critical coefficient but the thermodynamic quantity itself, and the terms which do not
show the coherent anomaly (for example, the first term of equation (3.13)) may be
included in it. On the other hand, if we use the form (2.15), we have g: = 0.391(78)
(I = A) or g2 = 0.453(13) (I = B) from the same series of approximations. These
values are not consistent with the estimates obtained from other critical coefficients
at all. Thus, in the CAM framework we can conclude that C'i shows a logarithmic
divergence at the critical point.

4.2, One-dimensional S = % XZ model

In this model the ground states of even-spin clusters are singlet, and those of edd-spin
clusters are two-fold degenerate. Thus, we have to treat even-spin clusters in order to
know the behaviour of the infinite system, in which the ground state is singlet. In fact,
the series of approximations obtained from edd-spin clusters do not show the coherent
anomaly well. Here we consider the AN = 2, Ny = 2-10 and AN =4, N, = 2-8
approximations. The values of g. and various critical coefficients are given in table 3.

We have made the least-squares fitting just as in the one-dimensional § = %
transverse Ising model. The temporary estimates of the critical exponents and their
corresponding critical points are given in table 4. The estimates of 4,4 and 6 are
obtained from the (N,, Ng) = (4,6), (4,8}, -+, (10, 12} series of approximations and
the (N, Np) = (4,8),(6,8),---,(10, 12) one, and those of af are obtained from the
AN =2, N, = 8,10,12 one and the AN = 2, N, = 6,8,10 one. Because of the
restriction that NV should be even, we have used the AN = 4 series of approximations
to increase the number of data for fitting. Although there is no such justification for
the AN = 4 series as for the AN = 2 series, these results show that these series of
approximations are also highly canonical (see figure 3).
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Table 3. The mean-field critical point and critical coefficients of the one-dimensional
S= % XZ model.

Nan N g X+ g T c} c

2 4 1.143440 2.0854  0.9407  1.2266 0.00000 0.03652
2 6 1.121763 2.2650 0.9761 1.2923  0.00000 0.05997
4 6 1.099 750 2.5219 1.0256 1.3843 0.03875 0.061 84
4 8 1.088179 2.6798 1.0553 1.4397 0.03938 0.07978
3] 8 1.076511 2.8851 1.0929 1.6105  0.06390 0.08113
6 10 1.069325 3.0278 1.1186 1.5590  0.064 56 0.09568
8 10 1.062 095 3.2037 1.1495 1.6177  0.08285 0.096 70
3 12 1.057198 3.3351 1.1723 1.6611 0.08344 0.10893
10 12 1.052275 3.4914 1.1987 1.7119  0.09811 0.10974
Tahle 4. The estimates of the critical exbonents {ar) and the carresnondine values of

af eEtimMAales o SRS CrILICAI CRPOACILE oy A0 SAC CcoTTecpllding vatues

the critical point of the one-dimensional § = -%- XZ model. The exponent a! (I=
or B) denotes the estimate obtained from the cluster I. The notation v = 1.5‘2(4)
means vy = 1.52 £ 0.04. The ervors in v, and § indicate the standard deviations
in the estimates by the least-squares fitting, and those of a® and oP stand for the
difference of the estimates obtained from the AN = 2, N4 = 8,10,12 approximations
and the AN = 2, Na = 6, 8,10 approximations.

Exponents ~ Fel & at oB

Values of CE 1.52(4) 0.264(16) 6.8(1.1) 0(leg) 0{log)
Values of g*  0.998(6) 1.002(5) 0.999(4) 0.991(3) 1.005(3)

4.3. Discussion

The one-dimensional § = I transverse Ising model was solved by S Katsura [7] and
P Pfeuty [8), and the one-dimensional S = } XZ model was solved by E Lieb, T
Schultz and D Mattis [9] and B M McCoy [ 10] These solutions are listed in table 5
together with our final estimates, in which the values and errors of the critical points
are determined to include all the estimates obtained from the least-squares fitting of
various critical coefficients except for C. Our estimates and the exact solutions are
consistent with each other, which shows that our approach is powerful for the study
of zero-temperature phase transitions of quantum spin systems.

Table 5. The estimates and the exact solutions of the critical points and critical
exponents of {¢) the one-dimensional § = % transverse Ising model and (b) the one-
dimensional § = % XZ model. The ‘exact’ exponents v and § are obtained from
other exact values and the scaling relations.

Quantities o ¥ B 5 o
(a) Our estimates 0.5005(14) 1.760(9) 0.125(7) 15.1(8) O(log)
Exact solutions [7,8] 0.5 1.75 0.125 15 0(log)
{3) Our estimates 1.000(8) 1.52(4) 0.264(16) 6.8(1.1) 0{log}
Exact solutions [9, 10] 1 1.5 0.25 7 O(log)

The phenomenological derivation of the double-cluster approximation [26] is based
on the finite-size scaling hypothesis, namely based on the assumptions that the size
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of each cluster is large enough and that the two clusters have the same shape and
their sizes are close to each other. However, the results obtained in the present section
show that the approximations using small clusters or large-AN pairs of clusters are
also canonical. These facts suggest that in the double-cluster approximation the CAM
scaling is satisfied beyond the range of validity of the finite-size scaling. This property
is expected to be useful when we treat higher-spin or higher-dimensional systems,
because many approximations can be obtained from several clusters.

In the present paper we have tried to estimate the critical exponents not only of
the disordered phase (y and @), but also of the ordered phase () and at the critical
point (§). For this purpose we have had to calculate all the excited states of the cluster
Hamiltonian, and consequently we can only treat small clusters because of the limited
memories of computers. However, if we only want to know the critical phenomena
of the disordered phase, it is possible to calculate ¥, and C} using only the ground
state of the cluster Hamiltonian and numerical differentiation with respect to H, H 4
or g at most twice. On the other hand, in order to evaluate /] and !, we have to
perform this numerical differentiation four times, which is practically difficult because
of the limited accuracy of the numerical computations.

Thus, using the Lanczés algorithm we can treat rather large clusters, the sizes
of which are comparable with those used in the finite-size scaling method [4]. Then
our approach is expected to give better results than those obtained from the finite-size
scaling method, because much more data are available for fitting in our scheme. Using
this technique we are now studying two-dimensional quantum spin systems and S = 1
quantum spin systems.

5. Sununary

In the present paper we have formulated the double-cluster approximation for quantum
spin systems at T = 0, and we have estimated not only the critical points but also
the critical exponents ¥, 3,6 and a of the one-dimensional § = % transverse Ising
model and the one-dimensional S = 1 XZ model using the CAM. Our estimates are
in good agreement with the exact solutions, which shows that the CAM works well in
zero-temperature phase transitions of quantum spin systems. Studies by us are now
in progress to apply the present method to higher-dimensional quantum spin systems
and higher-spin quantum spin systems.
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Appendix

Here we briefly derive the explicit expression of the derivative dP'/dgl,_, (1= A or
B).

( ]1)\t. first we differentiate the Schrédinger equation of the unperturbed Hamiltonian
Hiv' s

EA R
Hig I} = k Z S§Si — 9253-’) In) = By |n)! (A1)
i=1
with respect to g, and expand the derivative d|n)!/dg in terms of {|m)'}, i.e.
d
3™ =2 ahmim)" (A2)
After a short calculation we obtain
d
L= 2 mimistinY & EH'Z ap ) (A3)
g pre El,
EL#E! El=
In particular; when |n)! = |g)!, we have
o 1
= 2 W nlSTlo)' g (A4)
n#g

because |g)! is not degenerate.

Then after some straightforward calculation the derivative dP'/dg| g=g. 18 given
by
d
d—P,I = = E D ({glSt InY (n] S5 im)! (m]S¥ 1g)!
g 9=y ﬂ#ﬂ mEg
+ (n]S? [m)'(m|SE |9) {9SF |n)’
2t Al z I & i
+ (m|Slg) {g]S5 n) (n] S |m) )(El El)( B
, 2
w—menwsmmyw@rﬁm (A5)
n#yg
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